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Abstraet---A sequential method is proposed to determine the strength of the heat source in inverse heat 
conductio:a problems. This method uses symbols to represent the temporal source strength and then 
executes a computational method to calculate the temperature distribution. Consequently, a set of linear 
equations is constructed from the comparison between the calculated symbolic temperature and the 
measured numerical temperature. Thus, the inverse problem is solved through the linear least-squares error 
method, which leads to a solution of the unknown source strength at the present time step. Results from 
the examples confirm that the proposed method is applicable in solving the inverse heat source problem. 
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INTRODUCTION 

The inverse heat conduction problems deal with the 
determination of the crucial parameters in analysis 
such as the internal energy source, contact conduc- 
tance, surface heat flux, thermal properties, etc. They 
have been widely applied in many design and manu- 
facturing problems especially when the direct 
measurements for the problem are not possible. Wide 
attention has been called to this problem, and most 
studies employ the numerical methods [1-8] to deter- 
mine the unknown conditions in the inverse problems. 
In the numerical methods, the inverse problem is for- 
mulated from the finite difference, the finite element, 
or the boundary element methods to calculate the 
responses of tl~.e system. In order to determine 
unknown conditions, these methods have often been 
combined with the optimization algorithms such as 
regularization technique, the sequential regularization 
approach, the adjoint equation approach coupled to 
the conjugate gradient method, genetic algorithms, 
and the multi-dimensional simplex method. 

Based on the numerical approach, it needs iter- 
atively solve the direct and the sensitivity problems 
in order to obtaJin the undetermined conditions. The 
direct problem is used to supply a solution that is 
compared to the measured responses based on the 
presumed values of the unknown condition. The sen- 
sitivity problem is used to offer the search direction 
and the search step size in the optimization algorithm. 
The sensitivity calculation not only increases the com- 
putational load but also limits the minimal step of the 
temporal coordinate. To avoid the above problems, 

Yang [9] successfully applied a symbolic method to 
solve the inverse heat conduction problem. The 
unique feature of the symbolic approach is that the 
inverse computation is in a linear domain and the 
nonlinear optimization process used in the numerical 
approach can be eliminated. Furthermore, the iter- 
ation in the direct problem is avoided and the cal- 
culation in the sensitivity analysis is eliminated. How- 
ever, the side effects of the symbolic computation are 
also presented, which is the unpredictable growing size 
of the memory allocations and leads to an inefficient 
computation [10]. To resolve the problem, a sequen- 
tial algorithm is proposed and the algorithm still has 
the advantage in the usage of the symbolic compu- 
tation. Additionally, the concept of the future time [4] 
is also employed to stabilize the estimated results. 

In the process of the proposed approach, the source 
strength is represented as a symbol in each time step. 
A hybrid method, a finite-element method in spatial 
domain and a finite-difference method in temporal 
domain [11], is performed to find the temperature field 
in the slab. In each time step, the calculated results of 
temperature distribution are expressed by an 
unknown symbol that describes the source strength at 
the present time step. Because the calculated tem- 
perature field is explicitly giyen as function of the 
source strength, the inverse analysis can be directly 
achieved by the resulting symbolic expressions and 
measurement datum. As a result, the inverse problem 
becomes a linear equation with one unknown variable 
in each time step. It leads to a solution of the unknown 
source strength through a direct substitution. When 
the concept of future time (=  r) is used, the inverse 
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Greek symbols 
Ax increment of spatial coordinate 
At increment of temporal domain 
2 random number 
cr standard deviation of measurement 

errors 

NOMENCLATURE 

coefficient in the derived temperature ¢ 
equation 
estimated source strength 
number of future time 
temporal coordinate 
temperature 
spatial coordinate 
matrix notation 
vector notation. 

estimated source strength at a 
temporal grid. 

Subscripts 
i, j, k, m indices 
exact exact temperature 
measurement measured temperature 
s measured location. 

Superscripts 
j, p indices of temporal coordinate 

- dimensional parameters 
estimated strength. 

problem becomes a problem with r linear equations. 
It leads to a solution of the unknown source strength 
through a linear least-squares error method. In this 
paper, only the linear case is considered. It means that 
there are no temperature-dependent coefficients in the 
heat equation or in the boundary conditions. The 
dimensionless heat equation is considered with the 
sensor location at one side of the boundaries (i.e., 
x = 1), which can be implemented to other situations 
with constant coefficients and variable's length of the 
spatial domain. In nonlinear problems, the present 
analysis can be used to compute the associated lin- 
earized equations. Furthermore, it is not difficult to 
extend our analysis to the case of multiple sensor 
locations. 

This paper includes four sections. In the first 
section, the current development of the inverse prob- 
lems is introduced and the features of the proposed 
method are also stated. In the second section, the 
characteristics of the inverse problem are delineated 
and the process of the proposed method is illustrated. 
In the third section, three different heat sources are 
employed to demonstrate the process of the proposed 
method. A discussion of the analyzed results is also 
presented in this section. At last, the overall con- 
tribution of this research is concluded in the fourth 
section. 

APPROACH TO A HEAT SOURCE PROBLEM 
BASED ON THE PROPOSED METHOD 

Problem statement 
The inverse heat source problem in one spatial 

dimensional consists of finding the strength of the heat 
source at interior point of the spatial interval while 
the temperature measurements at the end are given. 

Consider a slab with £ thickness and constant thermal 
properties. This slab originally has a uniformly dis- 
tributed temperature. At a specific time 7 = 0, a heat 
source 9(t) is applied to the interior of the slab x = JL 
while the front and back surfaces are adiabatic. Then, 
a dimensionless mathematical formation of the heat 
conduction problem is presented as follows : 

OZT 0T 
dx'~-w'+g(t)f(X--Xs)=~- 0 < x <  1, t > 0  (1) 

where the 
defined as: 

T(x ,O)=O 0~<x~<l  (2) 

~3~xT = 0  t > 0  (3) 
x = 0  

OT 
~Xx= = 0  t > 0  (4) 

following dimensionless quantities are 

x= z xs= T T = Z  k=E t -  epz_ 

/~ is the thermal conductivity and pCp is the heat 
capacity per unit volume, T0 and kr refer to the non- 
zero reference temperature and thermal con- 
ductivity, respectively. We assume /¢=/<r and 

g(t) = g(O1YlfcJ'o. 
The inverse problem is given the temperature Y(t) 

measured at x = 1 to estimate the strength of the heat 
source g(t). 

The method to determine the strength o f  the heat source 
The proposed method uses a finite-element method 

with a linear element to discretize the spatial coor- 
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dinate and uses a finite-difference method to discretize 
the temporal coordinate. A finite-element method 
withp equidistam grid at t = t~ [11] is used to construct 
the following matrix equation : 

[N1{L} = { , I , ,} - [~{r ,}  

where M = 

1 1 

Ax Ax 

1 2 

Ax Ax 

0 . .  

0 . .  

0 .. 

. . .  0 0 

. . .  0 0 

. . .  0 0 

1 2 1 

Ax Ax Ax 

1 1 
0 

Ax Ax 
~ + l ) x ~ + l )  

(6) 

IN]= 

Ax Ax 
3 6 "'" 0 

Ax 2Ax 
6 3 "'" 0 

0 . . . . . .  0 0 

• Ax 2Ax Ax 
0 . . .  6 3 6 

0 . . .  0 
Ax Ax 

6 3 
(p+ 1) x (g+  1) 

(7) 

• .. 7",.2 

{~i} = {/}i {~i} = "~- 

L ' 0 " ]  ( p + l )  L?f +I ( p + l )  

T~ 
{~} . . . .  

T, ~ 

T p+j q,+l) 

where 4~i = g(ti) and 7~ = (dT~/dt). A x  is the increment 
of  the spatial coordinate. The superscript is denoted 
as the index of the spatial grid and the subscript is 
denoted as the index of the temporal grid. The location 
of ~b~ in vector {~t} is at the grid corresponding with 
the source location x,. 

Next, we consider our  finite element expression for 
{ iri} as a backward difference at time ti. Therefore, we 
have 

1 1 T {t,} = ~ { r , } - ~ {  ,_,}. (9) 

Here At is the increment of the temporal coordinate. 
Substitute equation (9) into equation (5), we have the 

(5) following differential equation : 

[KJ{T,} = [ B I { T ~ _ , } + { ~ , }  (10) 

where 

[K] --- [M] + [N] and [B] = ~-~ [N]. 

Therefore, the strength of the heat source 4~i can be 
solved iteratively along the temporal coordinate. An 
important  characteristic of the method is its sequential 
nature ; that is the estimated variable depends on the 
measured temperature and the previous 4~s and i is 
sequentially increased by one at each time step. 

When t = ti, the temperature distribution {Ti} can 
be derived from equation (10) as follows : 

{r,} = [XI- '  [Sl{ri_~} + [ / q - '  {o,} 

= [c]{r ,_ ,}  + [n]{O,} 

= [C]{T~_,} + [D]{u,}dp, (1 l) 

where [C] = [K]-'[B] and [D] = [/(1 -I .  {u i ) i s  a unit  
vector with a unit  a t / -component .  Therefore, the cal- 
culated temperature a t j  spatial grid and at time t~ can 
be represented as a linear function of the estimated 
strength ~bi. 

T/= a~o +a{,d?, (12) 

where a~0 is calculated from the previous state and 
a[i~ is a numerical value corresponding with the coor- 
dinate at t~ and xj. In other words, the value of a[.o is 
the / -component  of vector [C] { Tj_ 1} and the value of 
a~ is the / -component  of vector [D] {u~). 

When t = tin, the estimated conditions ~1, q~2, 
~3 . . . . .  q~m- 1 are known and the object is to estimate 
~bm. In order to add stability to the inverse algorithm, 
the simplest sequential procedure is to assume tem- 
porally that several future conditions are constant  
with time. In other words, the undetermined con- 
ditions 4~.., 4'm+ 1 . . . . .  ~b=+r_2, ~b,.+._, are assumed to 
be equal : 

(8) ~bm+l . . . . .  q~=+r-: = q~m+,-I = ~bm. (13) 

The calculate temperature at j-spatial grid and at 
time tin, tin+ ~ . . . . .  t in+r-1  can be written as follows : 

T~ = a'.o + a~.m~m 

T ~ +  l = aYm+l,O+aJm+l,m~m-.l-aJm+l,m+l~,n+l 

= a£+ ~ o + (aL+ l ,, + a',~+ i~+ 1)~b,. 

T~+ 2 = a£+ 2,0 +aJm+2~q~=-{-aJ+2,m+l "~"aJ+2dn+2(J~m+2 

= £/Jm+2,0 "~- (a£+2,,,, -'l'-a~+2,m+ l + a~+2.,.+2)~b,,, 
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+ a~+~_ I,m+ 2~rn+ 2 ~- " " " ~l-a3m+r-- l,m+r-- 2~m+r-- 2 

-~-aJm+r-l,m+r l~)m+r 1 

= a~+,-1.o+(a~+~-,.m+a~+,-,,m+l-~aJm+r 1 ¢ , , + 2  

+'"+dm+~ l.m+~-2+a/,+r l , m + r - - l ) ~ ) m  . 

(14) 

A linear least-squares error method [12] is used to 
estimate the value of ~bm. Therefore, the result ~ is 

re+r-- 1 i 
• EyJ  a j ~ a{,kx~ i -  i, oJ 

~ m -  i=m k=m (15) 
m + r - - l ( ~  12 

E a~k 
i=m \ k = m  / 

where Y~ is the measurement temperature at t = t~ and 
x = xj. This equation provides an algorithm that is 
used in a sequential manner  by increasing temporal 
index by one for each time step. 

The above formulation is derived from a finite- 
element-difference approach to estimate the strength 
of the heat source at x -- x~ when the temperature 
measurements are taken from x = x j  4= x,. It is not  
difficult to extend the proposed method to estimate 
multiple sources, to adopt multi-sensor's measure- 
ment, or to adopt the different kinds of numerical 
methods in the inverse estimation. 

COMPUTATIONAL ALGORITHM 

The procedure of the proposed method can be sum- 
marized as follows : given the number  of future time r 
and the discretized spatial and temporal size Ax and 
At. The problem is to  ̂estimate^ ~̂bm when t = tin. The 
previous states ~bl, ~b2, ~b3 . . . . .  q~m-1 are known and 
the calculated temperature distribution at t = t,~_ 
over slab is available. The measured temperatures are 
taken from x = xj, 

Step 1. Construct equation (14) through the numeri- 
cal method. 

Step 2. Collect the coefficients of equation (14). 
Step 3. Collect the measurement Y~, ~¢S~_1_ 1 . . . .  , 

Y ~ + r -  I " 

Step 4. Calculate ~,, according to equation (15). 
Step 5. Calculate the temperature distribution at 

t=tm.  
Step 6. Terminate the process if the final iteration is 

attached. Otherwise, let m = m + 1 and return 
to step 1. 

RESULTS AND DISCUSSIONS 

In this section, problems defined from equations 
(1)-(4) are used as examples to estimate the strength 
of the heat source. Three different source functions 

over temporal domain ; namely, a triangular function, 
a sinusoidal function, and a quarter sinusoidal func- 
tion are used to illustrate the proposed method. In the 
example problems, the stability and the accuracy of 
the estimation are discussed. Furthermore,  the results 
are also compared to the solutions of  Huang and 
Ozisik's approach [13]. The exact temperature and the 
source strength used in the following examples are 
selected so that these functions can satisfy equations 
(1)-(4). The accuracy of the proposed method is 
assessed by comparing the estimated source strength 
with the preselected source strength. Meanwhile, the 
simulated temperature measurement is generated 
from the exact temperature in each problem and it is 
presumed to have measurement errors. In other 
words, the random errors of measurement are added 
to the exact temperature. It can be shown in the fol- 
lowing equation : 

Ym . . . . . . . . .  t = Ye . . . .  - [ -  ~ 0 "  (16) 

where Yexact in equation (16) is the exact temperature 
and Ym . . . . . . . . .  t is the measured temperature at the grid 
points, a is the standard deviation of measurement 
errors. 2 is a uniform random number. 

The time domain in all cases is from 0-1.8 with 0.03 
increment. As well, the increment of spatial coordinate 
is 0.1. The heat sources are applied at x = 0.5 and the 
temperature measurements are taken from x = 1 in 
all examples. Two cases of random noise level 
a = 0.001 and a = 0.005 are adopted. The value 2 is 
calculated by the IMSL subroutine D R N N O R  [14] 
and chosen over the range - 2.576 < 2 < 2.576, which 
represent the 99% confidence bound for the measure- 
ment temperature. 

The following three examples demonstrate the 
application of the proposed approach. The strength 
of the heat source is presented as the time-varying 
function. Detailed descriptions for the examples are 
shown as follows : 

Example 1 : 

g ( t ) = 0 . 3 + 7 t  when 0 < t < 0 . 9  

and 

g(t) = 1.5--~t when 0.9 ~< t ~< 1.8. 

Example 2 : 

g ( t ) = s i n ( ~ )  when 0 < t ~ <  1.8. 

Example 3 : 

g( t )=  1.0 when 0 < t < 0 . 9  

and 

g( t )=0 .5  when 0.9~<t~<1.8.  

When measurement errors are not  included, no 
future time (r = 1) is needed in the example problems. 
The results are shown in Figs. 1, 4, and 7, and all 
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Fig. 1. Estimation of the strength of the heat source in example 1 (measurement error cr = 0). 
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Fig. 2. Estimation of the strength of the heat source in example 1 (measurement error tr = 0.001). 
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Fig. 3. Estimation of the strength of the heat source in example 1 (measurement error tr = 0.005). 
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Fig. 4. Estimation of the strength of the heat source in example 2 (measurement error a = 0). 

1 . 5  , ' I ' ' I ' ' t ' ' I ' ' I ' ' 

" 0.5 

o 

-0.5 

-1 

- Exact ~ s ~  
o E s t i m a t e d  r = 2 

,1 Estimated r = 4 

-1.5 , ~ [ , , I , , I , , I , , I , J 

0 0.3 0.6 0.9 1.2 1.5 1.8 
Temporal-coordinate 

Fig .  5. Estimation of the strength of the heat source in example 2 (measurement error a = 0.001) .  
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Fig. 6. Estimation of the strength of the heat source in example 2 (measurement error a = 0.005). 
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Fig. 7. Estimation of the strength of the heat source in example 3 (measurement error a = 0). 
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Fig. 8. Estimation of the strength of the heat source in example 3 (measurement error a = 0.001). 

examples have excellent approximations. When 
measurement errors are included, the future times are 
used to stabilize the estimated results in the example 
problems. In the example problems, when the future 
times are used, the measured value after the last time 
step t --- 1.8 are generated from the same source func- 
tion form as that in the previous time interval. For  
example, the measured value after the last time 
step t = 1.8 in example 1 are calculated from 
g(t) = 1 .5- (5 /9) t .  In the first case a =  0.001, the 
results are shown in Fig. 2 for example 1, Fig. 5 for 
example 2, and ]Fig. 8 for example 3. In the figures, 
the results show that they have more stable outcome 
when r = 4. In the second case a = 0.005, the results 
are shown in Fig. 3 for example 1, Fig. 6 for example 
2, and Fig. 9 for example 3. The results show that they 
have more stabl,~ estimation when r = 6. Generally 
speaking, the results show that it needs more future 
times to stabilize the estimation when error level is 

raised. The same examples are done by Huang and 
Ozisik [12]. They used the combinat ion of  the regular 
and modified conjugate gradient methods to perform 
inverse analysis. They concluded that the combined 
method is found to be more accurate than either of  
the regular and modified conjugate gradient methods. 
However,  the results shown in their paper have sig- 
nificant deviation near the final time t = 1.8. To allevi- 
ate the error occurring in the immediate vicinity of  
the end point, they choose the solution valid up to a 
time less than t = 1.5. In other words, the agreement 
between the predicted and the exact values are good 
only over the time interval 0 < t < 1.5. In this 
research, the above incorrect phenomenon at the end- 
ing of  the time interval can be alleviated. The agree- 
ment between the estimated results and the exact ones 
are very good over the problem domain 0 < t ~ 1.8. 

In conclusion, the proposed method has more accu- 
rate results than those of  the past approach. More-  
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Fig. 9. Estimation of the strength of the heat source in example 3 (measurement error ~r = 0.005). 

over, the numerical  results show tha t  the exact solu- 
t ion can be found  when  future t ime is no t  used (r = 1). 
Yet, this is under  the condi t ion  tha t  the measurement  
errors are neglected. W h e n  measurement  errors are 
included, it is suggested tha t  the r = 4 for cr = 0.001 
and  r = 6 for ~ = 0.005 are needed for the bet ter  esti- 
mat ions  in the examples. 

CONCLUSIONS 

A sequential  approach  has been in t roduced  for solv- 
ing the inverse heat  source problems.  A finite-element- 
difference me thod  is employed to solve the symbolic 
tempera ture  field when  the source s t rength  is rep- 
resented as a symbol. The proposed  me thod  has the 
advantage  of  the usage of  the symbolic computa t ion  
in the inverse problem but  it el iminates the dis- 
advantages  caused by the symbolic computa t ion .  In 
other  words, the unique feature of  the proposed 
approach  is tha t  the inverse computa t ion  is in a l inear 
domain ,  the nonl inear  opt imizat ion  process used in 
the numerical  approach  can be eliminated,  the iter- 
a t ion in the direct p rob lem is avoided,  and  the cal- 
culat ion in the sensitivity analysis is eliminated. Fur-  
thermore,  the size of  the compute r  memories  can be 
reduced and  it leads to an  increase in efficiency in 
the symbolic computa t ion .  Three  examples have been 
used to show the usage of  the proposed method.  The 
results show tha t  the exact solut ion can be found 
th rough  the proposed me thod  when  measurement  
errors are no t  considered. W h e n  measurement  errors 
are increased, it is suggested tha t  the increasing of  
the future times to stabilize the f luctuat ion of  the 
es t imat ion f rom the exact solut ion (i.e., r = 4 for 
a = 0.001 and  r = 6 for a = 0.005). This result  can be 
referred to adop t  the n u m b e r  of  future t imes in the 
inverse source problem in the future researches. The 

proposed me thod  is also applicable to the o ther  kinds 
of  inverse problems such as bounda ry  es t imat ion in 
the one- or mul t i -d imensional  heat  t ransfer  problems.  
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